Home
Class 12
MATHS
tan^(-1)""((sqrt(1+x^(2))-1)/(x)) का मान...

`tan^(-1)""((sqrt(1+x^(2))-1)/(x))` का मान `tan^(-1) ` के पदों में ज्ञात कीजिए ।

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(x+sqrt(1+x^(2)))=

tan[2Tan^(-1)((sqrt(1+x^(2))-1)/x)]=

tan[(sqrt(1+x^(2))-1)/x] =

tan^-1 [(1)/(sqrt(x^2-1))]

Prove that tan^(-1)((sqrt(1+x^2)-1)/x)=1/2 tan^(-1)x .

s=tan^(-1)((sqrt(1+x^(2))-1)/(x)) and T=tan^(-1)x then (ds)/(dT)

Differentiate tan^(-1)((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1)x.

Derivative of tan^(-1)((sqrt(1+x^(2))-1)/(x))w.r.t.tan^(-1)x is

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) w.r.t. tan^(-1)x