Home
Class 11
MATHS
The points A(0,0),B(cosalpha,sinalpha) ...

The points `A(0,0),B(cosalpha,sinalpha)` and `C(cosbeta,sinbeta)` are the vertices of a right-angled triangle if (a)`sin((alpha-beta)/2)=1/(sqrt(2))` (b) `cos((alpha-beta)/2)=-1/(sqrt(2))` (c)`cos((alpha-beta)/2)=1/(sqrt(2))` (d) `sin((alpha-beta)/2)=-1/(sqrt(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The points A(0,0),B(cos alpha,sin alpha) and C(cos beta,sin beta) are the vertices of a right- angled triangle if (a)sin((alpha-beta)/(2))=(1)/(sqrt(2))(b)cos((alpha-beta)/(2))=-(1)/(sqrt(2))(c)cos((alpha-beta)/(2))=(1)/(sqrt(2))(d)sin((alpha-beta)/(2))=-(1)/(sqrt(2))

The distance between the points (a cos alpha, a sin alpha) and (a cos beta, a sin beta) is a) 2|sin((alpha-beta)/(2))| b) 2|a sin((alpha-beta)/(2))| c) 2|a cos((alpha-beta)/(2))| d) |a cos((alpha-beta)/(2))|

If cosalpha=1/(sqrt(2)),sinbeta=1/(sqrt(3)) , show that tan((alpha+beta)/2)cot((alpha-beta)/2)=5+2sqrt6 or 5-2sqrt6

If cos alpha=(1)/(sqrt(2)),sin beta=(1)/(sqrt(3)), show that tan((alpha+beta)/(2))cot((alpha-beta)/(2))=5+2sqrt(6) or 5-2sqrt(6)

If cos alpha+cos beta=0=sin alpha+sin beta, then cos2 alpha+cos2 beta is equal to (a)-2sin(alpha+beta)(b)-2cos(alpha+beta)(c)2sin(alpha+beta)(d)2cos(alpha+beta)

Let (sqrt(2)sin alpha)/sqrt(1+cos 2alpha)=1/7 and sqrt((1-cos2 beta)/2)=1/sqrt(10) where alpha,beta in (0,pi/2) . Then tan(alpha+2beta) is equal to

Let (sqrt(2)sin alpha)/sqrt(1+cos 2alpha)=1/7 and sqrt((1-cos2 beta)/2)=1/sqrt(10) where alpha,beta in (0,pi/2) . Then tan(alpha+2beta) is equal to

If the sides of two sides of a right angled triangle are (cos2 alpha+cos2 beta+2cos(alpha+beta)) and (sin2 alpha+sin2 beta+2sin(alpha+beta)) then find the hypotenuse

If cosalpha+cosbeta=0=sinalpha+sinbeta, then cos2alpha+cos2beta is equal to (a) -2"sin"(alpha+beta) (b) -2cos(alpha+beta) (c) 2"sin"(alpha+beta) (d) 2"cos"(alpha+beta)

If cosalpha+cosbeta=0=sinalpha+sinbeta, then cos2alpha+cos2beta is equal to (a) -2"sin"(alpha+beta) (b) -2cos(alpha+beta) (c) 2"sin"(alpha+beta) (d) 2"cos"(alpha+beta)