Home
Class 12
MATHS
let f(x)=(tan^2{x})/(x^2-[x]^2) , x > 0 ...

let `f(x)=(tan^2{x})/(x^2-[x]^2) , x > 0` and `f(x)=0 , x=0` and `f(x)=sqrt({x}cot{x}), x < 0` then

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=x(x-1)(x-2) , x in [0,2] Find f(0) and f(2)

Given a real valued function f such that f(x)={(tan^2{x})/((x^2-[x]^2))for\ x >0 1\ for\ x=0{x}cot{x}for\ x 0^+)f(x)=1 b. (lim)_(x-0^-)f(x)=cot1 c. cot^(-1)((lim)_(x->0^-)f(x))\ ^2=1 d. tan^(-1)((lim)_(x->0^+)f(x))=pi/4

Given a real-valued function f such that f(x)={(tan^2{x})/((x^2-[x]^2) sqrt({x}cot{x}),for x 0 Where [x] is the integral part and {x} is the fractional part of x , then ("lim")_(xvec0^+)f(x)=1 , ("lim")_(xvec0^-)f(x)=cot1 , cot^(-1)(("lim")_(xvec0^-)f(x))^2=1 , tan^(-1)(("lim")_(xvec0^+)f(x))=pi/4

Given a real-valued function f such that f(x)={(tan^2{x})/((x^2-[x]^2) sqrt({x}cot{x}),for x 0 Where [x] is the integral part and {x} is the fractional part of x , then ("lim")_(xvec0^+)f(x)=1 , ("lim")_(xvec0^-)f(x)=cot1 , cot^(-1)(("lim")_(xvec0^-)f(x))^2=1 , tan^(-1)(("lim")_(xvec0^+)f(x))=pi/4

Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)), x ne 0, then f(x)=

Let f(x+(1)/(x) ) =x^2 +(1)/(x^2) , x ne 0, then f(x) =?

Let f(x)=int (x^2)/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 ,Then f(1) is :

Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 then f(1) is

Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 then f(1) is

Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 then f(1) is