Home
Class 12
MATHS
" Limit "(int(h rarr0)^(x+h)ln^(2)tdt-in...

" Limit "(int_(h rarr0)^(x+h)ln^(2)tdt-int_(a)^(x)ln^(2)tdt)/(h)" equals to: "

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(h rarr0)(int_(a)^(x+h)ln^(2)tdt-int_(a)^(x)ln^(2)tdt)/(h) equals to

Lim_(hto0)(int_(a)^(x+h)ln^(2)tdt-int_a^(x)ln^(2)tdt)/(h) equals to :

lim_(x rarr0)(1)/(x^(2))int_(0)^(x)(tdt)/(t^(4)+1) is equal to

Lt_(x rarr0)((x^(4))/(int_(0)^(x^(2))tan^(-1)tdt))=

Lt_(x rarr0)((int_(0)^(x)tan^(2)t sec^(2)tdt)/(x^(3)))=

Evaluate: lim_(h rarr 0) (e^((x+h)^(2))-e^(x^(2)))/(h)

lim_(x rarr0)x log(sin x)

lim_(h rarr0)(e^((x+h)^(2))-e^(x^(2)))/(h)

lim_(h rarr0)(sin^(2)(x+h)-sin^(2)x)/(h)