Home
Class 12
MATHS
int(0)^(10 pi)[tan^(-1)x]dx...

int_(0)^(10 pi)[tan^(-1)x]dx

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greatest integer functionof x) is equal to

The value of int_(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greatest integer functionof x) is equal to

The value of int_(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greatest integer functionof x) is equal to

Evaluate: int_0^(10pi)[tan^(-1)x]dx ,w h e r e[x] represents greatest integer function.

Evaluate: int_0^(10pi)[tan^(-1)x]dx ,w h e r e[x] represents greatest integer function.

Evaluate: int_0^(10pi)[tan^(-1)x]dx ,w h e r e[x] represents greatest integer function.

Evaluate: int_0^(10pi)[tan^(-1)x]dx ,w h e r e[x] represents greatest integer function.

If int_(0)^(1)(tan^(-1)x)/(x)dx=k int_(0)^( pi/2)(x)/(sin x)dx then k=

If int_(0)^(1)(tan^(-1)x)/(x)dx=k int_(0)^( pi/2)(x)/(sin x)dx then the value of k is

int_(0)^(1)(tan^(-1)x)/(x)dx is equals to int_(0)^((pi)/(2))(sin x)/(x)dx(b)int_(0)^((pi)/(2))(x)/(sin x)dx(1)/(2)int_(0)^((pi)/(2))(sin x)/(x)dx(d)(1)/(2)int_(0)^((pi)/(2))(x)/(sin x)dx