Home
Class 11
MATHS
lim(x->c) (loge[x])/x where [.] denotes ...

`lim_(x->c) (log_e[x])/x` where [.] denotes the gif is

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->∞) (log_e[x])/x where [.] denotes the gif is

lim_(xrarr oo) (log[x])/(x) , where [x] denotes the greatest integer less than or equal to x, is

lim_(xrarr oo) (log[x])/(x) , where [x] denotes the greatest integer less than or equal to x, is

lim_(x rarr oo) (log x)/([x]) , where [.] denotes the greatest integer function, is

lim_(x->0) {(1+x)^(2/x)} (where {.} denotes the fractional part of x (a) e^2−7 (b) e^2−8 (c) e^2−6 (d) none of these

lim_(x->0) {(1+x)^(2/x)} (where {.} denotes the fractional part of x (a) e^2−7 (b) e^2−8 (c) e^2−6 (d) none of these

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.

if f(x)=([x])/(|x|),x!=0 where [.] denote the gif, then f(1) is

lim_(xrarr pi//2)([x/2])/(log_e(sinx)) (where [.] denotes the greatest integer function)