Home
Class 12
MATHS
OABC is a tetrahedron D and E are the mi...

OABC is a tetrahedron D and E are the mid points of the edges `vec (OA)` and `vec (BC)`. Then the vector `vec(DE)` in terms of `vec(OA), vec (OB) and vec(OC)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The magnitude of vectors vec(OA), vec(OB) and vec (OC) in figure are equal. Find the direction of vec(OA)+vec(OB)-vec(OC) . .

The magnitude of vectors vec(OA), vec(OB) and vec (OC) in figure are equal. Find the direction of vec(OA)+vec(OB)-vec(OC) . .

The magnitude of vectors vec(OA), vec(OB) and vec (OC) in figure are equal. Find the direction of vec(OA)+vec(OB)-vec(OC) . .

The resultant of the three vectors vec(OA), vec(OB) and vec(OC) shown in figure is

If P, Q , R are the mid-points of the sides AB, BC and CA of Delta ABC and O is point whithin the triangle, then vec (OA) + vec(OB) + vec( OC) =

In a triangle OAC, if B is the mid point of side AC and vec(OA)=veca,vec(OB)=vecb , then what is vec(OC) .

If vec(a)=vec(OA) " and " vec(b)=vec(AB), " then " vec(a)+vec(b) is -

Prove that 3vec(OD)+vec(DA)+vec(DB)+vec(DC) is equal to vec(OA)+vec(OB)+vec(OC) .

Prove that 3vec(OD)+vec(DA)+vec(DB)+vec(DC) is equal to vec(OA)+vec(OB)+vec(OC) .

Prove that 3vec(OD)+vec(DA)+vec(DB)+vec(DC) is equal to vec(OA)+vec(OB)+vec(OC) .