Home
Class 12
MATHS
A, B be points with PV's vec a, vecb. If...

A, B be points with PV's `vec a, vecb`. If the point C on OA is such that `2vec AC =vec (CO).vec (CD)` is parallel to `vec OB` and `vec CD= vec OB` then `vec AD`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A and B be points with position vectors veca and vecb with respect to origin O . If the point C on OA is such that 2vec(AC)=vec(CO), vec(CD) is parallel to vec(OB) and |vec(CD)|=3|vec(OB)| then vec(AD) is

Let A and B be points with position vectors veca and vecb with respect to origin O. If the point C on OA is such that 2vec(AC)=vec(CO), vec(CD) is parallel to vec(OB) and |vec(CD)|=3|vec(OB)| then vec(AD) is (A) vecb-veca/9 (B) 3vecb-veca/3 (C) vecb-veca/3 (D) vecb+veca/3

Let A and B be points with position vectors veca and vecb with respect to origin O . If the point C on OA is such that 2vec(AC)=vec(CO), vec(CD) is parallel to vec(OB) and |vec(CD)|=3|vec(OB)| then vec(AD) is (A) vecb-veca/9 (B) 3vecb-veca/3 (C) vecb-veca/3 (D) vecb+veca/3

Let A and B be points with position vectors veca and vecb with respect to origin O . If the point C on OA is such that 2vec(AC)=vec(CO), vec(CD) is parallel to vec(OB) and |vec(CD)|=3|vec(OB)| then vec(AD) is (A) vecb-veca/9 (B) 3vecb-veca/3 (C) vecb-veca/3 (D) vecb+veca/3

Let A and B be points with position vectors veca and vecb with respect to origin O . If the point C on OA is such that 2vec(AC)=vec(CO), vec(CD) is parallel to vec(OB) and |vec(CD)|=3|vec(OB)| then vec(AD) is (A) vecb-veca/9 (B) 3vecb-veca/3 (C) vecb-veca/3 (D) vecb+veca/3

Let O be an interior point of Delta ABC such that 2vec OA+5vec OB+10vec OC=vec 0

Prove that 3vec(OD)+vec(DA)+vec(DB)+vec(DC) is equal to vec(OA)+vec(OB)+vec(OC) .

Prove that 3vec(OD)+vec(DA)+vec(DB)+vec(DC) is equal to vec(OA)+vec(OB)+vec(OC) .

Prove that 3vec(OD)+vec(DA)+vec(DB)+vec(DC) is equal to vec(OA)+vec(OB)+vec(OC) .

Assertion A : If A, B, C, D are four points on a semi-circular arc with centre at 'O' such that |vec(AB)| = |vec(BC)|=|vec(CD)| , then vec(AB) +vec(AC) +vec(AD) =4 vec(AO) +vec(OB) +vec(OC) Reason R : Polygon law of vector addition yields vec(AB) +vec(BC) +vec(CD) +vec(AD)=2vec(AO) In the light of the above statements, choose the most appropriate answer from the options given below :