Home
Class 12
MATHS
If f(x) is derivable at x=2 such that f(...

If `f(x)` is derivable at `x=2` such that `f(2)=2` and `f'(2)=4 `, then the value of `lim_(h rarr0)(1)/(h^(2))(ln f(2+h^(2))-ln f(2-h^(2)))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(h rarr0)((a+h)^(2)sin(a+h)-a^(2)sin a)/(h)=

The value of lim_(x rarr0)(sin3x^(2))/(ln(cos(2x^(2)-x))) is

If f'(3)=2, then lim_(h rarr0)(f(3+h^(2))-f(3-h^(2)))/(2h^(2)) is

f((9)/(2))=(2)/(9), thenthevalueof lim_(x rarr0)f((1-cos3x)/(x^(2)))

The value of lim_(x rarr 0) (l_(n) (1+2h) - 2l_(n) (1+h))/(h^(2)) is :

If f'(2)=4 then,evaluate lim_(x rarr0)(f(1+cos x)-f(2))/(tan^(2)x)

If f'(x)=k,k!=0, then the value of lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2)) is

lim_(h rarr0)(e^((x+h)^(2))-e^(x^(2)))/(h)

lim_(x rarr0)(log(1-(x)/(2)))/(x)

lim_(h rarr0)(log(x+h)-log x)/(h)