Home
Class 12
MATHS
Let f (x)= tan/x, then the value of lim...

Let `f (x)`= `tan/x`, then the value of `lim_(x->oo) ([f(x)]+x^2)^(1/({f(x)}))` is equal to ` (where [.] , {.}` denotes greatest integer function and fractional part functions respectively) -

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=[x^(2)]-{x}^(2), where [.] and {.} denote the greatest integer function and the fractional part function , respectively , is

Let f(x)=(tanx)/(x), then log_(e)(lim_(xrarr0)([f(x)]+x^(2))^((1)/({f(x)}))) is equal, (where [.] denotes greatest integer function and {.} fractional part)

If f(x)=(tanx)/(x) , then find lim_(xto0)([f(x)]+x^(2))^((1)/({f(x)})) , where [.] and {.} denotes greatest integer and fractional part function respectively.

If f(x)=(tanx)/(x) , then find lim_(xto0)([f(x)]+x^(2))^((1)/({f(x)})) , where [.] and {.} denotes greatest integer and fractional part function respectively.

If f(x)=(tanx)/(x) , then find lim_(xto0)([f(x)]+x^(2))^((1)/([f(x)])) , where [.] and {.} denotes greatest integer and fractional part function respectively.

If f(x) = [x^2] + sqrt({x}^2 , where [] and {.} denote the greatest integer and fractional part functions respectively,then

If f(x)=[x^(2)]+sqrt({x}^(2)), where [] and {.} denote the greatest integer and fractional part functions respectively,then

The range of function f(x)=log_(x)([x]), where [.] and {.} denotes greatest integer and fractional part function respectively

Discuss the differentiability of f(x) =x[x]{x} in interval [-1,2] , where [.] and {.} denotes the greatest integer function and fractional part fntion , respectively .