Home
Class 12
MATHS
Let f(beta)=lim(alpha->beta)(sin^2alpha-...

Let `f(beta)=lim_(alpha->beta)(sin^2alpha-sin^2beta)/(alpha^2-beta^2)` them `f(pi/4)` greater then-

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(beta)=lim_(alpha rarr beta)(sin^(2)alpha-sin^(2)beta)/(alpha^(2)-beta^(2)) them f((pi)/(4)) greater then-

lim_(alpha to beta)[(sin^(2)alpha-sin^(2)beta)/(alpha^(2)-beta^(2))] is equal to

Evaluate the following limit : (lim)_(alpha->beta)[(sin^2alpha-sin^2beta)/(alpha^2-beta^2)]\ \

2sin^(2)beta+4cos(alpha+beta)sin alpha sin beta+cos2(alpha+beta)=

Prove that , tan(alpha+beta)tan(alpha-beta)=(sin^2alpha-sin^2beta)/(cos^2alpha-sin^2beta)

Prove that: tan(alpha+beta)tan(alpha-beta)=(sin^2 alpha-sin^2 beta)/(cos^2 alpha-sin^2 beta)

Simplify 2sin^(2)beta+4cos(alpha+beta)sin alpha sin beta+cos2(alpha+beta)

tan (alpha + beta) tan (alpha-beta) = (sin ^ (2) alpha-sin ^ (2) beta) / (cos ^ (2) alpha-sin ^ (2) beta)