Home
Class 10
MATHS
If a^2, b^2 and c^2 are in AP then prove...

If `a^2, b^2 and c^2` are in AP then prove that `a/(b+c), b/(c+a) and c/(a+b)` are also in A.P.

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^2, b^2, c^2 are in A.P , then prove that 1/(b+c), 1/(c+a),1/(a+b) are in A.P

If a^(2), b^(2), c^(2) are in A.P., prove that (1)/(b+c), (1)/(c+a), (1)/(a+b) are also in A.P.

Suppose a^2,b^2,c^2 are in A.P. Prove that a/(b+c),b/(c+a),c/(a+b) are also in A.P.S

If (b-c)^2,(c-a)^2,(a-b)^2 are in A.P., then prove that 1/(b-c),1/(c-a),1/(a-b) are also in A.P.

If (b-c)^2,(c-a)^2,(a-b)^2 are in A.P., then prove that 1/(b-c),1/(c-a),1/(a-b) are also in A.P.

If (b-c)^2,(c-a)^2,(a-b)^2 are in A.P., then prove that 1/(b-c),1/(c-a),1/(a-b) are also in A.P.

If (b-c)^2,(c-a)^2,(a-b)^2 are in A.P., then prove that 1/(b-c),1/(c-a),1/(a-b) are also in A.P.

If (b-c)^2,(c-a)^2,(a-b)^2 are in A.P., then prove that 1/(b-c),1/(c-a),1/(a-b) are also in A.P.

If a^(2) , b^(2) , c^(2) are in A.P , pove that a/(a+c) , b/(c+a) , c/(a+b) are in A.P .

If 1/a,1/b,1/c are in A.P., prove that : a(b + c), b(c + a), c(a + b) are also in A.P.