Home
Class 12
MATHS
lim(x rarr 1) (x+x^2+...+x^n-n)/(x-1)=...

`lim_(x rarr 1) (x+x^2+...+x^n-n)/(x-1)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(x rarr 1)((x+x^2+x^3+....+x^n-n)/(x-1))=820 , then find n.

If lim_(x rarr 1)((x+x^2+x^3+....+x^n-n)/(x-1))=820 , then find n.

lim_ (x rarr a) (x ^ (n) -a ^ (n)) / (xa) = n * a ^ (n-1)

Prove that lim_(x rarr 0) ((1+x)^n-1)/(x)=n .

What is the value of (lim_(x rarr 1) (x^n - 1)/( x - 1) for any integer n ?

lim_(x rarr 0) ((1+x)^(n)-1)/x is

lim_(x rarr1)((x+x^(2)+x^(3)++x^(n))-n)/(x-1)

lim_(x rarr1)((1-x)(1-x^(2))...(1-x^(2n)))/({(1-x)(1-x^(2))...(1-x^(n))}^(2)),n in N, equals ^2nP_(n)(b)^(2n)C_(n)(c)(2n)!(d) none of these

let f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1)