Home
Class 12
MATHS
lim(x->0) tan^(-1) (a/x^2), where a in R...

`lim_(x->0) tan^(-1) (a/x^2)`, where `a in R`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(tan^(-1)a)/(x^(2))

lim_(x to 0) tan^-1x/x

Prove that [lim_(xto0) (tan^(-1)x)/(x)]=0, where [.] represents the greatest integer function.

Prove that [lim_(xto0) (tan^(-1)x)/(x)]=0, where [.] represents the greatest integer function.

lim_(xto0)(tan2x)/x

if l=lim_(x->0) (x(1+acosx) - bsinx)/x^3 = lim_(x->0) (1+acosx)/x^2-lim_(x->0) (b sinx)/x^3 where l in R , then

if l=lim_(x->0) (x(1+acosx) - bsinx)/x^3 = lim_(x->0) (1+acosx)/x^2-lim_(x->0) (b sinx)/x^3 where l in R , then

Statement 1:lim_(x rarr0)[(tan^(-1))/(x)]=0, where [.] represents greatest integer function. Statement 2:(tan^(-1))/(x)<1 in the neighbourhood of x=0

Evaluate: [(lim)_(x rarr0)(tan^(-1)x)/(x)], where [ lrepresent the greatest integer function

lim_(x->0)(1/(x^2)-1/(tan^2x))