Home
Class 12
MATHS
eliminating a, b, c from x=a/(b-c), y=b/...

eliminating a, b, c from `x=a/(b-c), y=b/(c-a) z=c/(a-b)` we get

Promotional Banner

Similar Questions

Explore conceptually related problems

By eliminating a,b,c from the Homogeneous Equations x=(a)/(b-c),y=(b)/(c-a),z=(c)/(a-b) where a,b,c not all zero then xy+yz+zx=

Eliminate x,y,z from a=x/y-z, b=y/z-x, c=z/x-y

If (x)/(b + c - a) = (y)/(c + a - b) = (z)/(a + b - c) , then value of x(b -c) + y(c -a) + z(a - b) is equal to

If (log x)/(b-c) = (log y)/(c-a) = (log z)/(a-b) , then prove that x^(b+c).y^(c+a).z^(a+b) = 1

If (log x)/(b-c)=(log y)/(c-a)=(log z)/(a-b), then which of the following is/are true? zyz=1 (b) x^(a)y^(b)z^(c)=1x^(b+c)y^(c+b)=1( d) xyz=x^(a)y^(b)z^(c)