Home
Class 12
MATHS
I=int(x*sin^(-1)x*dx)/(I)...

I=int(x*sin^(-1)x*dx)/(I)

Promotional Banner

Similar Questions

Explore conceptually related problems

I=int sin^(-1)(2x)dx

I=int(cosx)/(sin^(6)x)dx

I = int (sin^-1 x)^2 dx

I = int (sin^-1 x)^2 dx

If I_(1) = int sin^(-1) x dx and I_(2) = int sin^(-1) sqrt(1-x^(2))dx then

If I_(1)=int sin^(-1)x dx and I_(2)=int sin^(-1) sqrt(1-x^(2)) dx then -

Method of integration by parts : I_(1)=int sin^(-1)x dx and I_(2)= int sin^(-1) sqrt(1-x^(2))dx then.....

I=int(-1/x^2)sin((1)/(x))dx

Evaluate: (i) int((sin^(-1)x)^3)/(sqrt(1-x^2))\ dx (ii) int(sin(2+3logx)/x\ dx

I= int sin^(2) 3x dx .