Home
Class 12
MATHS
If f(x)=(sin(1+[x]))/[[x] for \x\!= 0 ...

If `f(x)=(sin(1+[x]))/[[x]` for `\x\!= 0` (where [.] represents the greatest integer `leq x`), then `lim_(x->0^-) f(x)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = { sin[x]/([x]),[x] != 0 ; 0, [x] = 0} , Where[.] denotes the greatest integer function, then lim_(x rarr 0) f(x) is equal to

If f(x)={("sin"[x])/([x]) ,for [x]!=0, 0 ,for[x]=0,where [x] denotes the greatest integer less than or equal to x , then lim_(x→0)f(x) is (a) 1 (b) 0 (c) -1 (d) none of these

Evaluate: lim_(x rarr0)(sin x)/(x), where [.] represents the greatest integer function.

If f(x)={((sin[x])/([x]), [x]!=0),(0,[x]=0):} where [.] denotes the greatest integer less than or equal to x then

Evaluate : [lim_(x to 0) (sin x)/(x)] , where [*] represents the greatest integer function.