Home
Class 12
MATHS
If f(x)={1 ; x lt 0 and 1+sin x ; fo...

If `f(x)={1 ; x lt 0 and 1+sin x ; for 0 leq x leq pi/2` , then check the differentiability of the function `f (x)` at `x = 0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Check the continuity of the function f(x)=2x-1, if x =0

If sin2x=cos3x and 0 leq x lt pi/2 then x=

Find f'(x) if f(x)= (sin x)^(sin x) for all 0 lt x lt pi .

If f(x) = {sinx , x lt 0 and cosx-|x-1| , x leq 0 then g(x) = f(|x|) is non-differentiable for

f(x) = 1 + [cosx]x in 0 leq x leq pi/2 (where [.] denotes greatest integer function) then

If f: x: -1 leq x leq 1 -> {x : -1 leq x leq 1} , then which is/are bijective

If f(x)={{:(,1,x lt 0),(,1+sin x,0 le x lt (pi)/(2)):} then derivative of f(x) x=0

If f(x)={{:(,1,x lt 0),(,1+sin x,0 le x lt (pi)/(2)):} then derivative of f(x) at x=0