Home
Class 12
MATHS
If f(x) =x. x leq 1 and f (x) = x^2 + b...

If `f(x) =x. x leq 1 and f (x) = x^2 + bx + c (x > 1) and f' (x)` exists finitely for all `x in R`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={:{(x,x le 1),(x^(2)+bx+c, x gt 1 and f'(x)) exists finitely for all x in R , then

If f(x)={{:(,x,x le 1, and f'x(x)),(,x^(2)+bx+c, , x gt 1):} and exists finetely for all x in R , then

If f(1-x)=f(x) for all x,f'(1)=0 and f'(0) exists,find its value.

Let f(x)=1+x , 0 leq x leq 2 and f(x)=3−x , 2 lt x leq 3 . Find f(f(x)) .

If f(x) =ax^(2) + bx + c satisfies the identity f(x+1) -f(x)= 8x+ 3 for all x in R Then (a,b)=

If f(x) =ax^(2) + bx + c satisfies the identity f(x+1) -f(x)= 8x+ 3 for all x in R Then (a,b)=

f(x)={ax^(2)+bx+c,|x|>1x+1,|x|<=1 If f(x) is continuous for all values of x, then;