Home
Class 12
MATHS
If f (x) ={x^3 , xlt 0 and 0 x=0 and -x...

If `f (x) ={x^3 , xlt 0 and 0 x=0 and -x^3 , x lt 0` ,then f is derivable at x = 0

Promotional Banner

Similar Questions

Explore conceptually related problems

If quad {x^(3),x<0 and 0x=0 and -x^(3),x<0 then f is derivable at x=0 and -x^(3),x<0

If f(x)={(x^3, x gt 0),(0, x=0),(-x^3, x lt0):}

Let f(x) = {{:(( 2+x)",",if , x ge0), (( 2-x)",", if , x lt 0):} show that f(x) not derivable at x =0

If f(x)={{:(,1,x lt 0),(,1+sin x,0 le x lt (pi)/(2)):} then derivative of f(x) x=0

if f(x) ={{:( x,"for " xge 0),( -x ,"for " xlt 0 ):}then

If xlt 0 then f(x) =x^2-x is

If f(x)={{:(,1,x lt 0),(,1+sin x,0 le x lt (pi)/(2)):} then derivative of f(x) at x=0

If f(x) = 0 for x lt 0 and f(x) is differentiable at x = 0 then for xgt 0 , f(x) may be