Home
Class 12
MATHS
lim(n->oo)[1/(1-n^2)+2/(1-n^2)+......+n/...

`lim_(n->oo)[1/(1-n^2)+2/(1-n^2)+......+n/(1-n^2)]` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Lim_(n rarr oo)[(1)/(1-n^(2))+(2)/(1-n^(2))+.....+(n)/(1-n^(2))] is equal to-

underset(n to oo)lim {1/(1-n^(2))+(2)/(1-n^(2))+....+(n)/(1-n^(2))} is equal to

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

lim_(n rarr oo) ((1)/(1-n^(2)) + (2)/(1-n^(2)) +…...+(n)/(1-n^(2))) is :

lim_(xto oo)((1)/(1-n^(2))+(2)/(1-n^(2))+ . . .+(n)/(1-n^(2))) is

lim_(n->oo)[(1+1/n^2)(1+2^2 /n^2)(1+3^2 /n^2)......(1+n^2 / n^2)]^(1/n)

Evalute lim_(n->oo)[1/((n+1)(n+2))+1/((n+2)(n+4))+......+1/(6n^2)]

lim_(n rarr oo) { n/(n^(2)+1^(2)) + n/(n^(2)+2^(2))+......+ n/(n^(2)+n^(2))} is equal to