Home
Class 12
MATHS
lim(x->oo) x^(1/x) equals...

`lim_(x->oo) x^(1/x)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

(lim)_(x->\ oo)(x/(1+x))^x equals

lim_(x rarr oo)sin x equals

lim_(x rarr oo)x^((1)/(x)) equals

The value of (lim)_(x->oo)2/x"log"(1+x) is equal to............

If lim_(x->oo) f(x) exists and is finite and nonzero and if lim_(x->oo) {f(x)+(3f(x)−1)/(f^2(x))}=3 ,then find the value of lim_(x->oo) f(x)

If lim_(x->oo) f(x) exists and is finite and nonzero and if lim_(x->oo) {f(x)+(3f(x)−1)/(f^2(x))}=3 ,then the value of lim_(x->oo) f(x) is

lim_(x->oo)((1^(1/x) +2^(1/x) +3^(1/x) +...+n^(1/x))/n)^(nx) is equal to

lim_(x rarr oo)(1)/(x)

lim_(x rarr oo)(1)/(x)

Lim_(x->oo) ((x/(x+1))^a + sin (1/x))^x is equal to