Home
Class 12
MATHS
Let alpha=arcsin(sqrt(63))/(8) then the ...

Let `alpha=arcsin(sqrt(63))/(8)` then the value of `sin^(2)((alpha)/(4))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin alpha=(4)/(5) , then find the value of sin 2 alpha .

If sin^(16) alpha = (1)/(5) , then the value of (1)/( cos^(2) alpha) + (1)/( 1 + sin^(2) alpha) + (2)/( 1 + sin^(4) alpha) + (4)/( 1 + sin^(8) alpha) is

If 4sin alpha cos alpha-8sin^(3)alpha cos alpha=(sqrt(3))/(2) and 8cos^(4)alpha-8cos^(2)alpha+1=(-1)/(2), where alpha in(0,(pi)/(2)) Then the value of log_(cos((a)/(2)))((sin alpha+cos alpha)/(sqrt(2))) is equal to

If sin (arcsin x) = (sqrt(2))/(4) , then what is the value of x ?

If alpha in [(pi)/(2),pi] then the value of sqrt(1+ sin alpha)-sqrt(1 - sin alpha) is equal to

If alpha=(pi)/(17), then the value of (sin21 alpha-sin alpha)/(sin16 alpha+sin4 alpha) is equal to

If 0 lt alpha lt (pi)/(2) and sin alpha + cos alpha = sqrt2, then the value of cos 3 alpha is-

If 4 sin 27^(@)=sqrt(alpha)-sqrt(beta) , then the value of (alpha+beta-alpha beta+2)^(4) must be

If 4 sin 27^(@)=sqrt(alpha)-sqrt(beta) , then the value of (alpha+beta-alpha beta+2)^(4) must be