Home
Class 12
MATHS
यदि f, g : R rarr R क्रमशः f(x) = x^(2)...

यदि `f, g : R rarr R` क्रमशः `f(x) = x^(2) + 3x + 1, g(x) = 2x - 3` से परिभाषित है तो (i) fog (ii) gof (iii) fof (iv) gog निकालें।

Promotional Banner

Similar Questions

Explore conceptually related problems

If f, g: R rarr R are defined by f(x)=x^2+3 x+1 , g(x)=2 x-3 , find (i) fog (ii)fof (iii) (gof) (2) (iv) (gog)(-5)

If f, g : R rarr R are defined respectively by : f (x) = x^2 + 3x + 1 , g (x) = 2x- 3 . Find fog and gof.

If f : R rarr R, f(x) = x^(2) + 2x - 3 and g : R rarr R, g(x) = 3x - 4 then the value of fog (x) is

If f : R rarr R, f(x) = x^(2) + 2x - 3 and g : R rarr R, g(x) = 3x - 4 then the value of fog (x) is

If f,g:R rarr R are defined respectively by f(x)=x^(2)+3x+1,g(x)=2x-3, find fog (ii) gof (iii) fof (iv) gog.

If f, g : R rarr R such that : f (x) = x^2 , g (x) = x + 1, then find fog and gof.

If f: R to R and g: R to R are defined by f(x) = 2x^(2) +3 and g(x) = 3x-2 , then find: (i) (fog)(x) , (ii) (gof)(x) , (iii) (fof)(0) , (iv) (go(fof))(3)

If f,g: RvecR are defined respectively by f(x)=x^2+3x+1,g(x)=2x-3, find fog (ii) gof (iii) fof (iv) gog.

Let f : R rarr R be defined by f(x) = x^(2) + 3x + 1 and g : R rarr R is defined by g(x) = 2x - 3, Find, (i) fog (ii) gof

Let f : R rarr R be defined by f(x) = x^(2) + 3x + 1 and g : R rarr R is defined by g(x) = 2x - 3, Find, (i) fog (ii) gof