Home
Class 11
MATHS
(x^(4)+x^(2)+1)/(x^(2)+x+1)...

(x^(4)+x^(2)+1)/(x^(2)+x+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

If the integral int(x^(4)+x^(2)+1)/(x^(2)x-x+1)dx=f(x)+C, (where C is the constant of integration and x in R ), then the minimum value of f'(x) is

lim_(xto-1) ((x^(4)+x^(2)+x+1)/(x^(2)-x+1))^((1-cos(x+1))/(x+1)^(2)) is equal to

lim_(xto-1) ((x^(4)+x^(2)+x+1)/(x^(2)-x+1))^((1-cos(x+1))/(x+1)^(2)) is equal to

If (2x)/(x^(4)+x^(2)+1)=A/(x^(2)-x+1)+B/(x^(2)+x+1) , then AB =

lim_(x rarr1)((x^(4)+x^(2)+x+1)/(x^(2)-x+1))^((1-cos(x+1))/((x+1)^(2))) is equal to 1 (b) ((2)/(3))^((1)/(2))(c)((3)/(2))^((1)/(2))(d)e^((1)/(2))

3.Resolve (x^(4)-x^(2)+1)/(x^(2)(x^(2)-1)^(2)) into partial fractions.

If x^(2)+3x+1=0 then find x^(3)+(1)/(x^(3)),x^(4)+(1)/(x^(4)),x^(2)-(1)/(x^(2)),x^(2)+(1)/(x^(2))