Home
Class 10
MATHS
In DeltaABC, /C is an acute angle, seg A...

In `DeltaABC`, `/_C` is an acute angle, seg `AD bot` seg `BC`. Prove `AB^(2)=BC^(2)+AC^(2)-2BCxxDC` by completing the following activity.

Let `AB=c`, `AC=b`, `AD=p`, `BC=a`, `DC=x`
`:.BD=a-x`
In `DeltaADB`, by Pythagoras theorem,
`c^(2)=(a-x)^(2)+square`
`c^(2)=a^(2)-2ax+x^(2)+square`...........`(1)`
In `DeltaADC`, by Pythagoras theorem,
`b^(2)=p^(2)+square`
`p^(2)=b^(2)-square` ..........`(2)`
Substituting value of `p^(2)` from `(2)` in `(1)`
`c^(2)=a^(2)-2ax+x^(2)+square`
`c^(2)=a^(2)+b^(2)-square`
`:.AB^(2)=BC^(2)+AC^(2)-2BCxxDC`.

Text Solution

Verified by Experts

In `DeltaADB`, by Pythagoras theorem,
`c^(2)=(a-x)^(2)+p^(2)`
`c^(2)=a^(2)-2ax+x^(2)+p^(2)`.......`(1)`
In `DeltaADC`, by Pythagoras theorem,
`b^(2)=p^(2)+x^(2)`
`p^(2)=b^(2)-x^(2)`..........`(2)`
Substituting value of `p^(2)` from `(2)` in `(1)`
`c^(2)=a^(2)-2ax+x^(2)+b^(2)-x^(2)`
`c^(2)=a^(2)+b^(2)-2ax`
`:.AB^(2)=BC^(2)+AC^(2)-2BCxxDC`.
Promotional Banner

Topper's Solved these Questions

  • PYTHAGORAS THEOREM

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise 3.5 (4 mark each)|4 Videos
  • PYTHAGORAS THEOREM

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Assignment 3.1|8 Videos
  • PYTHAGORAS THEOREM

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise 3.3 (2 mark each)|8 Videos
  • PROBABILITY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise ASSIGNEMENT 5.4|12 Videos
  • QUADRATIC EQUATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise CHALLENGIN QUESTIONS|2 Videos

Similar Questions

Explore conceptually related problems

In a Delta ABC, /_ B is an acute-angle and AD bot BC . Prove that: AB^2 + CD^2 = AC^2 + BD^2

In DeltaABC , seg AD bot seg BC , DB=3CD . Prove that 2AB^(2)=2AC^(2)+BC^(2) .

In Delta ABC seg AD perp seg BC,DB=3CD Prove that 2AB^(2)=2AC^(2)+BC^(2)

In the figure, seg AD bot side BC and B-D-C , then prove AB^(2)-BD^(2)=AC^(2)-CD^(2) .

In figure,/_B<90^(@) and AD perp BC .Prove that AC^(2)=AB^(2)+BC^(2)-2BC.BD

In fig. /_B of /_\ABC is an acute angle and AD _|_ BC ; prove that AC^2 = AB^2 + BC^2 - 2 BC xx BD

det[[a^(2),bc,ac+c^(2)a^(2)+ab,b^(2),acab,b^(2)+bc,c^(2)]]=4a^(2)b^(2)c^(2)

(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ac)

In obtuse angled DeltaABC , /_B gt90^(@) . If seg Adbot ray CB and D-B-C , then prove that AC^(2)=AB^(2)+BC^(2)+2BC*DB .