Home
Class 10
MATHS
In DeltaPQR, seg PM is median. PM=9, PQ^...

In `DeltaPQR`, seg `PM` is median. `PM=9`, `PQ^(2)+PR^(2)=290` then find length of seg `QR`.

Text Solution

Verified by Experts

In `DeltaPQR`, seg `PM` is the median
`:.` by Apollonius theorem,
`PQ^(2)+PR^(2)=2PM^(2)+2QM^(2)`
`:.290=2xx81+2QM^(2)`
`:.290=162+2QM^(2)`
`:.2QM^(2)=290-162`
`:.2QM^(2)=128`
`:.QM^(2)=(128)/(2)`
`:.QM^(2)=64`
`:.QM=sqrt(64)`
`:.QM=8`
`QM=(1)/(2)QR`......(`M` is the midpoint of `QR`)
`:.8=(1)/(2)QR`
`:.QR=8xx2`
`:.QR=16`
Promotional Banner

Topper's Solved these Questions

  • PYTHAGORAS THEOREM

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise 3.5 (4 mark each)|4 Videos
  • PYTHAGORAS THEOREM

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Assignment 3.1|8 Videos
  • PYTHAGORAS THEOREM

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise 3.3 (2 mark each)|8 Videos
  • PROBABILITY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise ASSIGNEMENT 5.4|12 Videos
  • QUADRATIC EQUATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise CHALLENGIN QUESTIONS|2 Videos

Similar Questions

Explore conceptually related problems

In DeltaPQR ,seg PM is a median , PM=9 and PQ^(@)+PR^(2)=290. Find the length of QR.

In Delta ABC , seg AP is a median. If BC = 18, AB^(2) + AC^(2) = 260 then find the length of AP.

In the given figure, seg PM is a median of DeltaPQR.PM=9andPQ^(2)+PR^(2)=290, then find QR.

In DeltaPQR , seg RS bisects angleR .if PR = 15, RQ = 20, PS = 12 , then find SQ.

In DeltaPQR,PS is the median. If PQ=12 cm,PR=16cm PS=10cm, then QR= ……….. .

In DeltaPQR , /_PQR=90^(@) , PQ=6 and QR=8 then the length of seg PR is……. .

In the following figure, in DeltaPQR , seg RS is the bisector of anglePRQ . If PS = 9, SQ = 6, PR = 18, find QR.

In DeltaPQR seg PM is a median. Angle bisectors of /_PMQ and /_PMR interesect side PQ and side PR in points X and Y respectively. Prove that XY||QR . Complete the proof byfilling in the boxes: