Home
Class 10
MATHS
In the figure, /LMN=/LKN=90^(@) seg MK...

In the figure, `/_LMN=/_LKN=90^(@)`
seg `MK bot ` seg `LN`.
Complete the following activity to prove `R` is the midpoint of seg `MK`.

Proof: In `DeltaLMN`, `/_LMN=90^(@)`
seg `MR bot` hypotenuse `LN`
`:.` by property of geometric mean,
`MR^(2)=squarexxRN`
In `DeltaLKN`, `/_LKN=90^(@)`
seg `KR bot ` hypotenuse `LN`
`:.` by property of geometric mean,
`KR^(2)=LRxxsquare`
From `(1)` and `(2)`, we get
`MR^(2)=square :. MR=square`.
`:. R` is the midpoint of seg `MK`.

Promotional Banner

Topper's Solved these Questions

  • PYTHAGORAS THEOREM

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Assignment 3.4|12 Videos
  • PYTHAGORAS THEOREM

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Assignment 3.5|5 Videos
  • PYTHAGORAS THEOREM

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Assignment 3.2|6 Videos
  • PROBABILITY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise ASSIGNEMENT 5.4|12 Videos
  • QUADRATIC EQUATION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise CHALLENGIN QUESTIONS|2 Videos

Similar Questions

Explore conceptually related problems

In the figure , angle LMN = angle LKN = 90^(@) seg MK bot seg LN . Complete the following activtiy to prove R is the midpoint of seg MK .

In the figure, /_DFE=90^(@) , seg FG bot side DE , DG=8 , FG=12 then complete the following activity to find the length of seg DE . In DeltaDFE , /_DFE=90^(@) , seg FG bot hypotenuse DE :. by theorem of geometric mean, FG^(2)=squarexxEG :.12^(2)=squarexxEG EG=(12xx12)/(square) :.EG=square DE=DG+GE=8+square=square

In the figure, /_QPR=90^(@) , seg PM bot seg QR and Q-M-R , PM=10 . QM=8 , find QR .

In DeltaPQR,anglePQR=90^(@) and seg QSbot hypotnuse PR,-P-S-R,then

In the figure, /_ABC=90^(@) and seg Bdbot side AC , A-D-C then by property of geometric mean. BD^(2)=square xxsquare . Fill in the boxes with the correct answer.

.Point M is the midpoint of Seg AB.If AB=8 then find the length of AM.

In the adjoining figure, seg XY abs() seg BC, then which of the following statements is true?

In the figure, AD=17 , AB=10 , BC=15 . /_ABC=/_BCD=90^(@) seg AE bot side CD then find the length of (i) AE (ii) DE (iii) DC .