Home
Class 10
MATHS
If 5sec theta-12 cosec theta=0, find the...

If `5sec theta-12 cosec theta=0`, find the values of `sec theta, cos theta` and `sin theta`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(5 \sec \theta - 12 \csc \theta = 0\) and find the values of \(\sec \theta\), \(\cos \theta\), and \(\sin \theta\), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ 5 \sec \theta - 12 \csc \theta = 0 \] Rearranging gives: \[ 5 \sec \theta = 12 \csc \theta \] ### Step 2: Substitute the definitions of secant and cosecant Recall that: \[ \sec \theta = \frac{1}{\cos \theta} \quad \text{and} \quad \csc \theta = \frac{1}{\sin \theta} \] Substituting these into the equation gives: \[ 5 \cdot \frac{1}{\cos \theta} = 12 \cdot \frac{1}{\sin \theta} \] ### Step 3: Cross-multiply Cross-multiplying results in: \[ 5 \sin \theta = 12 \cos \theta \] ### Step 4: Divide both sides by \(\cos \theta\) Dividing both sides by \(\cos \theta\) (assuming \(\cos \theta \neq 0\)) gives: \[ \frac{5 \sin \theta}{\cos \theta} = 12 \] This simplifies to: \[ \tan \theta = \frac{12}{5} \] ### Step 5: Create a right triangle Using the tangent value, we can create a right triangle where: - Opposite side (perpendicular) = 12 - Adjacent side (base) = 5 ### Step 6: Calculate the hypotenuse Using the Pythagorean theorem: \[ \text{Hypotenuse}^2 = \text{Opposite}^2 + \text{Adjacent}^2 \] Calculating gives: \[ \text{Hypotenuse}^2 = 12^2 + 5^2 = 144 + 25 = 169 \] Thus, the hypotenuse is: \[ \text{Hypotenuse} = \sqrt{169} = 13 \] ### Step 7: Find \(\sec \theta\), \(\cos \theta\), and \(\sin \theta\) Now we can find the values: - \(\sec \theta = \frac{\text{Hypotenuse}}{\text{Adjacent}} = \frac{13}{5}\) - \(\cos \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{5}{13}\) - \(\sin \theta = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{12}{13}\) ### Final Results Thus, the final values are: \[ \sec \theta = \frac{13}{5}, \quad \cos \theta = \frac{5}{13}, \quad \sin \theta = \frac{12}{13} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Assignment 7.5|7 Videos
  • TRIGONOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise EXAMPLES FOR PRACTICE ( 1 MARK MULTIPLE CHOICE QUESTTIONS)|12 Videos
  • TRIGONOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Assignment 7.3|13 Videos
  • THEOREMS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise CIRCLE|15 Videos

Similar Questions

Explore conceptually related problems

If 5 sin theta - 12 cos theta = 0 , find the values of sec theta and cosec theta .

If sec theta - cosec theta = 0 , then the value of (sec theta + cosec theta) is :

If sec theta - cosec theta = 0 ,then the value of tan theta + cot theta is

If 3 sin theta - 4 cos theta = 0 , then find the values of tan theta , sec theta and cosec theta .

If sec theta + cos theta = 2 , then the value of sec^(2) theta + cosec^(2) theta is :

If sec theta-csc theta=(4)/(3) then what is the value of sin theta-cos theta

What is the value of sec theta, If sin theta - cos theta = 0 ?

sec theta+tan theta=5 then the value of sin theta+cos theta

What is the value of sec^2 theta, if sin theta - cos theta = 0 ?