Home
Class 12
CHEMISTRY
The boiling point of an aqueous solu...

The boiling point of an aqueous solution is 100.18`.^(@)C`.
Find the freezing point of the solution .
`(Given : K_(b) = 0.52 K kg mol^(-1) ,K_(f) = 1.86 K kg mol^(-1))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the freezing point of the solution given its boiling point, we can follow these steps: ### Step 1: Identify the given data - Boiling point of the solution (T_b) = 100.18 °C - K_b (boiling point elevation constant) = 0.52 K kg mol⁻¹ - K_f (freezing point depression constant) = 1.86 K kg mol⁻¹ ### Step 2: Convert the boiling point to Kelvin To convert Celsius to Kelvin, we add 273.15: \[ T_b = 100.18 + 273.15 = 373.33 \, \text{K} \] ### Step 3: Determine the boiling point of pure water The boiling point of pure water (T_b°) is: \[ T_b° = 373.15 \, \text{K} \] ### Step 4: Calculate the change in boiling point (ΔT_b) Using the formula for boiling point elevation: \[ \Delta T_b = T_b - T_b° \] \[ \Delta T_b = 373.33 \, \text{K} - 373.15 \, \text{K} = 0.18 \, \text{K} \] ### Step 5: Calculate the molality (m) of the solution Using the boiling point elevation formula: \[ \Delta T_b = K_b \cdot m \] Rearranging gives: \[ m = \frac{\Delta T_b}{K_b} \] Substituting the values: \[ m = \frac{0.18 \, \text{K}}{0.52 \, \text{K kg mol}^{-1}} \] \[ m = 0.3462 \, \text{mol kg}^{-1} \] ### Step 6: Calculate the change in freezing point (ΔT_f) Using the freezing point depression formula: \[ \Delta T_f = K_f \cdot m \] Substituting the values: \[ \Delta T_f = 1.86 \, \text{K kg mol}^{-1} \cdot 0.3462 \, \text{mol kg}^{-1} \] \[ \Delta T_f = 0.644 \, \text{K} \] ### Step 7: Determine the freezing point of the solution (T_f) The freezing point of pure water (T_f°) is: \[ T_f° = 273.15 \, \text{K} \] Using the formula: \[ T_f = T_f° - \Delta T_f \] Substituting the values: \[ T_f = 273.15 \, \text{K} - 0.644 \, \text{K} \] \[ T_f = 272.506 \, \text{K} \] ### Step 8: Convert the freezing point back to Celsius To convert from Kelvin to Celsius: \[ T_f = 272.506 - 273.15 \] \[ T_f = -0.644 \, \text{°C} \] ### Final Answer The freezing point of the solution is approximately: \[ T_f \approx -0.64 \, \text{°C} \] ---

To find the freezing point of the solution given its boiling point, we can follow these steps: ### Step 1: Identify the given data - Boiling point of the solution (T_b) = 100.18 °C - K_b (boiling point elevation constant) = 0.52 K kg mol⁻¹ - K_f (freezing point depression constant) = 1.86 K kg mol⁻¹ ### Step 2: Convert the boiling point to Kelvin ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The boiling point of an aqueous solution of a non - electrolyte is 100.52^@C . Then freezing point of this solution will be [ Given : k_f=1.86 " K kg mol"^(-1),k_b=0.52 "kg mol"^(-1) for water]

Freezing point of an aqueous solution is -0.186^(@)C . Elevation of boiling point of the same solution is ……..if K_(b)=0.512 K "molality"^(-1) and K_(f)=1.86K "molality"^(-1) :

A sugar solution boils at 101^(@)C . The molality of the sugar solution is (Given, K_(b) = 0.52^(@)C kg mol^(-1) )

For an aqueous solution freezing point is -0.186^(@)C . The boiling point of the same solution is (K_(f) = 1.86^(@)mol^(-1)kg) and (K_(b) = 0.512 mol^(-1) kg)

Difference in boiling point and freezing point of 10kg aqeous solution of urea is 100.2372^(@)C ,then what quantity of urea dissolved in the solution ? ( K_(b) = 0.512^(@)C and K_(f) = 1.86^(@)C kg mol e^(-1) )

Elevation in boiling point of an aqueous solution of a non-electroluyte solute is 2.01^(@) . What is the depression in freezing point of the solution ? K_(b)(H_(2)O)=0.52^(@)mol^(-1)kg K_(f)(H_(2)O)=1.86^(@)mol^(-1)kg

A solution of urea in water has boiling point of 100.15^(@)C . Calculate the freezing point of the same solution if K_(f) and K_(b) for water are 1.87 K kg mol^(-1) and 0.52 K kg mol^(-1) , respectively.

In a 0.5 molal solution KCl, KCl is 50% dissociated. The freezing point of solution will be ( K_(f) = 1.86 K kg mol^(-1) ):