Home
Class 9
MATHS
[II+a(I),a(2),a(3)],[a(1),I+a(2),a(3)],[...

[II+a_(I),a_(2),a_(3)],[a_(1),I+a_(2),a_(3)],[a_(1),a_(2),I+a_(3)]|

Promotional Banner

Similar Questions

Explore conceptually related problems

" (iv) "|[1+a_(1),a_(2),a_(3)],[a_(1),1+a_(2),a_(3)],[a_(1),a_(2),1+a_(3)]|=1+a_(1)+a_(2)+a_(3).

If |(1+a_(1),a_(2),a_(3)),(a_(1),1+a_(2),a_(3)),(a_(1),a_(2),1+a_(3))|=0 then a_(1)+a_(2)+a_(3)=

,1+a_(1),a_(2),a_(3)a_(1),1+a_(2),a_(3)a_(1),a_(2),1+a_(3)]|=0, then

If a_(1),a_(2),a_(3),a_(4),a_(5) are in HP, then a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+a_(4)a_(5) is equal to

If a_(1),a_(2),a_(3),a_(4),a_(5) are in HP, then a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+a_(4)a_(5) is equal to

If a_(1),a_(2),a_(3),a_(4),a_(5) are in HP, then a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+a_(4)a_(5) is eqiual to

If a_(1), a_(2), a_(3), a_(4), a_(5) are consecutive terms of an arithmetic progression with common difference 3, then the value of |(a_(3)^(2),a_(2),a_(1)),(a_(4)^(2),a_(3),a_(2)),(a_(5)^(2),a_(4),a_(3))| is

If a_(1), a_(2), a_(3), a_(4), a_(5) are consecutive terms of an arithmetic progression with common difference 3, then the value of |(a_(3)^(2),a_(2),a_(1)),(a_(4)^(2),a_(3),a_(2)),(a_(5)^(2),a_(4),a_(3))| is

if a_(1),a_(2),a_(3)……,a_(12) are in A.P and Delta_(1)= |{:(a_(1)a_(5),,a_(1),,a_(2)),(a_(2)a_(6),,a_(2),,a_(3)),(a_(3)a_(7),,a_(3),,a_(4)):}| Delta_(2)= |{:(a_(2)a_(10),,a_(2),,a_(3)),(a_(3)a_(11),,a_(3),,a_(4)),(a_(4)a_(12),,a_(4),,a_(5)):}| then Delta_(1):Delta_(2)= "_____"