Home
Class 12
MATHS
" If " |{:(x^(2)+x,,x+1,,x-2),(2x^(2)+3...

`" If " |{:(x^(2)+x,,x+1,,x-2),(2x^(2)+3x-1,,3x,,3x-3),(x^(2)+2x+3,,2x-1,,2x-1):}|=xA +B` then

Promotional Banner

Similar Questions

Explore conceptually related problems

Without expanding a determinant at any stage, show that |{:(x^(2)+x, x+1, x+2),(2x^(2) +3x-1, 3x, 3x-3),(x^(2) +2x+3, 2x-1, 2x-1):}|=xA+B where A and B are determinants of order 3 not involving x.

If |(x^2+x,x+1,x-2),(2x^2+3x-1,3x,3x-3),(x^2+2x+3,2x-1,2x-1)|=ax-12 then 'a' is equal to (1) 12 (2) 24 (3) -12 (4) -24

If |(x^2+x,x+1,x-2),(2x^2+3x-1,3x,3x-3),(x^2+2x+3,2x-1,2x-1)|=ax-12 then 'a' is equal to (1) 12 (2) 24 (3) -12 (4) -24

If |(x^2+x,x+1,x-2),(2x^2+3x-1,3x,3x-3),(x^2+2x+3,2x-1,2x-1)|=ax-12 then 'a' is equal to (1) 12 (2) 24 (3) -12 (4) -24

Without expanding a determinant at any stage, show that abs((x^2+x ,x+1 , x-2),(2x^2+3x-1 ,3x , 3x-3) , (x^2+2x+3, 2x-1 ,2x-1))=xA+B ,where A and B are determinant of order 3 not involving xdot

Without expanding a determinant at any stage, show that abs((x^2+x ,x+1 , x-2),(2x^2+3x-1 ,3x , 3x-3) , (x^2+2x+3, 2x-1 ,2x-1))=xA+B ,where A and B are determinant of order 3 not involving xdot

y=|(x^2+x, x+1, x-2),(2x^2+3x+1, 3x, 3x-3),(x^2+3x+2, 2x-1, 2x-1)| represents (A) a straight line (B) a circle (C) a parabola (D) none of these

|{:(3x^2,3x,1),(x^2+2x,2x+1,1),(2x+1,x+2,1):}|=(x-1)^3