Home
Class 12
MATHS
If sum(r=1)^(r=n)(r^4+r^2+1)/(r^4+r)=67...

If `sum_(r=1)^(r=n)(r^4+r^2+1)/(r^4+r)=675/26`, then n is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(r=1)^(r=n)(r^(4)+r^(2)+1)/(r^(4)+r)=(675)/(26) , then n equal to

If sum_(r=1)^(r=n)(r^(4)+r^(2)+1)/(r^(4)+r)=(675)/(26) , then n equal to

If sum_(r=1)^(r=n)(r^(4)+r^(2)+1)/(r^(4)+r)=(675)/(26) , then n equal to

If sum_(r=1)^(r=n)(r^(4)+r^(2)+1)/(r^(4)+r)=(675)/(26) , then n equal to

If S_(n)=sum_(r=1)^(n)(2r+1)/(r^(4)+2r^(3)+r^(2)), then S_(10) is equal to

sum_(r=1)^( If )(r^(2)+3r+3)(r+1)!=998(998!)-4 then n is equal to

If C_(r) stands for ""^(n)C_(r) and sum_(r=1)^(n)(r*C_(r))/(C_(r-1))=210 , then n equals:

If sum_(r=1)^n I(r)=(3^n -1) , then sum_(r=1)^n 1/(I(r)) is equal to :