Home
Class 11
MATHS
If a, b, c, d are in G.P., then (a^2 - b...

If `a, b, c, d` are in G.P., then `(a^2 - b^2), (b^2 - c^2), (c^2 - d^2)` are in

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c,d are in GP then prove that, (a^2-b^2), (b^2-c^2), (c^2-d^2) are in GP.

If a, b, c, d are in G.P., prove that a^(2) - b^(2), b^(2)-c^(2), c^(2)-d^(2) are also in G.P.

If a,b,c,d are in G.P.,prove that (a^(2)-b^(2)),(b^(2)-c^(2)),(c^(2)-d^(2)) are in G.P.and (1)/(a^(2)+b^(2)),(1)/(b^(2)+c^(2)),(1)/(c^(2)+d^(2)) are in G.P

If a, b, c and d are in G.P., show that, (a-b)^(2), (b-c)^(2), (c-d)^(2) are in G.P.

If a, b, c, d are in GP, prove that (a^(2)-b^(2)), (b^(2)-c^(2)), (c^(2)-d^(2)) are in GP.

If a ,b ,c ,d are in G.P. prove that: (a^2+b^2),(b^2+c^2),(c^2+d^2) are in G.P. (a^2-b^2),(b^2-c^2),(c^2-d^2) are in G.P. 1/(a^2+b^2),1/(b^2+c^2),1/(c^2+d^2) are in G.P.

If a, b, c and d are in G.P., show that, a^(2) + b^(2), b^(2) + c^(2), c^(2) + d^(2) are in G.P.

a,b,c,d are in G.P. Prove that a^(2)-b^(2),b^(2)-c^(2), c^(2)-d^(2) are also in G.P.

If a,b,c,d are in G.P.prove that: (a^(2)+b^(2)),(b^(2)+c^(2)),(c^(2)+d^(2)) are in G.P.(a^(2)-b^(2)),(b^(2)-c^(2)),(c^(2)-d^(2)) are in G.P.(1)/(a^(2)+b^(2)),(1)/(b^(2)+c^(2)),(1)/(c^(2)+d^(2)) are in G.P.(a^(2)+b^(2)+c^(2)),(ab+bc+cd),(b^(2)+c^(2)+d^(2))

If a,b,c,d………are in G.P., then show that (a-b)^2, (b-c)^2, (c-d)^2 are in G.P.