Home
Class 12
MATHS
if f(x)={(|x+2|)/(tan^-1(x+2)), x!=-2 a...

if `f(x)={(|x+2|)/(tan^-1(x+2)), x!=-2 and 2, x=-2` then, `f(x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={(|x+2|)/(tan^(-1)(x+2)), x!=-2 2, x=-2 , then f(x) is continuous at x=-2 (b) not continuous at x=-2 (c) differentiable at x=-2 (d) continuous but not derivative at x=-2

If f(x)={{:(,(|x+2|)/(tan^(-1)(x+2)),x ne -2),(,2, x=-2):} , then f(x) is

If f(x)={{:(,(|x+2|)/(tan^(-1)(x+2)),x ne -2),(,2, x=-2):} , then f(x) is

If f(x)=(Tan^(-1)(x+2))/(|x+2|), x ne -2 and f(-2)=2"then "

f(x) = (tan^(-1) (x +2))/(|x =2|) , x ne -2 " and " f(-2) =-1 then at x = -2 , f is

If f(x)={((x-2)2^(-(1/(|x-2|)+1/(x-2))),x!=2),(0,x=2):} then f(x) at x=2 is

If f(x)=tan^(-1) ((2x)/(1-x^(2))), x in R "then "f'(x) is given by