Home
Class 12
MATHS
Find the minimum value of (x1-x2)^2+((x...

Find the minimum value of `(x_1-x_2)^2+((x_1^2)/20-sqrt((17-x_2)(x_2-13)))^2` where `x_1 in R^+,x_2 in (13,17)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the minimum value of (x_1-x_2)^2+(sqrt(2-x_1^2)-9/(x_2))^2 where x_1in(0,sqrt2) and x_2inR^+

If x is real, find the minimum value of x^(2)-8x+ 17

Minimum value of (x_(1)-x_(2))^(2)+(sqrt(2-x_(1)^(2))+x_(2)-8)^2 ,where x_(1)in[-sqrt(2),sqrt(2)] and x_(2)in R is

the minimum value of x^2 - 8x +17 , AA x in R is

Evaluate, min[(x_1-x_2)^2+(5+sqrt(1-x_1^2)-sqrt(4x_2))^2],AAx_1,x_2 in R , is

Find the domain of the function : f(x)=(1)/(sqrt(log_((1)/(2))(x^(2)-7x+13)))

Find the value of (x^3 - 7x^2 + 13x + 17) when x = 2 + sqrt3

The minimum value of [x_1-x_2)^2 + ( 12 - sqrt(1 - (x_1)^2)- sqrt(4 x_2)]^(1/2) for all permissible values of x_1 and x_2 is equal to asqrtb -c where a,b,c in N , the find the value of a+b-c

The minimum value of [x_(1)-x_(2))^(2)+(12-sqrt(1-(x_(1))^(2))-sqrt(4x_(2))]^((1)/(2)) for all permissible values of x_(1) and x_(2) is equal to a sqrt(b)-c where a,b,c in N, the find the value of a +b-c

Find the domain of the function : f(x)=1/(sqrt((log)_(1/2)(x^2-7x+13)))