Home
Class 12
MATHS
d/(dx)x^(logx)=(A) x^(logx)(2log(x/x))...

`d/(dx)x^(logx)=(A) x^(logx)(2log(x/x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

d/dx(x^n.logx)

d/(dx)[(cosx)^(logx)+(logx)^(x)] =

d/dx( e^(x+5logx))

(d)/(dx)((logx)/(x^(2)))=

STATEMENT-1 : intx^(x)(1+logx)dx=x^(x)+C and STATEMENT-2 : (d)/(dx)x^(x)=x^(x)(1+logx)

STATEMENT-1 : intx^(x)(1+logx)dx=x^(x)+C and STATEMENT-2 : (d)/(dx)x^(x)=x^(x)(1+logx)

Compute d/(dx) ((logx)/(x))

Differentiate the following w.r.t. x : (x)^(logx)+(logx)^(x)

If y+d/(dx)(xy)=x(sinx+logx) , find y(x) .

Differentiate each of the following w.r.t. x : (i) sin (logx), x gt0 (ii) log(logx), xgt1