Home
Class 12
MATHS
Using sandwitch theorem find the value o...

Using sandwitch theorem find the value of `lim_(n->oo) sum_(i=1)^n 1/(nCi)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of lim_(n->oo) n^(1/n)

Find the value of lim_(n rarr oo)sum_(k=1)^(n)((k)/(n^(2)+k))

Find the value of lim_(n rarr oo)sum_(k=1)^(n)(k^(2)+k-1)/((k+1)!) .

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n)e^((r)/(n)) is -

Find the value of lim_(n rarr oo)sum_(r=1)^(n)(r^(2))/(n^(3)+n^(2)+r)

Find the value of sum_(p=1)^n(sum_(m=p)^n.^nC_m.^m C_p)dot And hence, find the value of lim_(n->oo)1/(3^n)sum_(p=1)^n(sum_(m=p)^n.^n C_m.^m C_p)dot