Home
Class 11
MATHS
lim(x->oo) logx/(x^n)=...

`lim_(x->oo) logx/(x^n)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarroo) (logx)/(x^n), n gt 0 , is

The value of lim_(xrarroo) (logx)/(x^n), n gt 0 , is

(lim)_(x->oo)(logx^n-[x])/([x]),\ n in N ,\ ([x]\ d e not e s\ t h e\ in t ege r\ l e s stanor\ e q u a l\ to\ x)\

If L=(lim)_(x->oo)(logx^n-[x])/([x]),\ w h e r e\ n in N ,\ t h e n-2L=

lim_(x rarr oo) (logx^(n)-[x])/([x]) , where n in N and [.] denotes the greatest integer function, is

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

lim_(xrarr oo) (logx^n-[x])/([x]) where n in N and [.] denotes the greatest integer function, is

lim_(xrarr oo) (logx^n-[x])/([x]) where n in N and [.] denotes the greatest integer function, is

lim_(x->oo)(1-x+x.e^(1/n))^n