Home
Class 11
MATHS
sqrt((1+sin x)/(1-sin x))= tan(pi/4+x/2)...

`sqrt((1+sin x)/(1-sin x))= tan(pi/4+x/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: sqrt(frac(1+sin2x)(1-sin2x))=tan(pi/4+x)

Differentiate the following functions with respect to x:tan^(-1){sqrt((1+sin x)/(1-sin x))},-(pi)/(2)

Differentiate the following functions with respect to x:tan^(-1){sqrt((1+sin x)/(1-sin x))},-(pi)/(2)

Prove that: *cot^(^^)(-1){(sqrt(1+sin x)+sqrt(1-sin x)/(sqrt(1+sin x)-sqrt(1-sin x))}=pi/2-x/2,| ifpil 2

If y= tan ^(-1) sqrt (( 1 - sin x)/( 1 + sin x)) , then the vluae of (dy)/(dx) at x = pi /2 is

Prove that: cot^(-1)((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=(x)/(2),x in(0,(pi)/(4))

Prove the following: cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]=(x)/(2);x in(0,(pi)/(4))

Prove the following: cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]=(x)/(2),x(0,(pi)/(4))

Prove the following: cot^(-1)((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=(x)/(2),x epsilon(0,(pi)/(4))

Prove that: cot^(-1)((sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x)))=(x)/(2),x in(0,(pi)/(4))