Home
Class 12
MATHS
int0^(tan((3pi)/8)) {x}dx equals...

`int_0^(tan((3pi)/8)) {x}`dx equals

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=Minimum{tan x,cot x}AA x in(0,(pi)/(2)) Then int_(0)^((pi)/(3))f(x)dx is equal to

int_0^(pi/8) tan^(2) (2x) dx =

int_(0)^(pi//8) tan^(2) 2x dx is equal to

The value of int_0^(pi//4) sqrt(tan x dx) +int_0^(pi//4) sqrt(cot x dx) is equal to

The value of int_(0)^((pi)/(2))log(tan x)dx is equal to -

int_(0)^(pi//4) tan x dx

int_(0)^( pi/4)tan^(3)dx

int_0^(pi) x f (sin x) dx is equal to :

int_(0)^((pi)/(3))[tan^(2)x]dx