Home
Class 12
MATHS
vec [AB]=3hat i+ hat j+ hat k and vec [C...

`vec [AB]=3hat i+ hat j+ hat k and vec [CD]= -3hat i+2 hat j+4 hat k` are two vectors. The position vectors of points A and C are `6 hat i+ 7 hat j+ 4 hat k and -9 hat j +2 hat k` respectively. Find the position vector of point P on the line AB and point Q on the line CD such that `vec [PQ]` is perpendicular to `vec [AB]` and `vec [CD]` both.

Promotional Banner

Similar Questions

Explore conceptually related problems

vec A B=3 hat i- hat j+ hat ka n d vec C D=-3 hat i+2 hat j+4 hat k are two vectors. The position vectors of the points Aa n dC are =6 hat i+7 hat j+4 hat ka n d=-9 hat j+2 hat k respectively. Find the position vector of a point P on the line A B and a point Q on the line C D such that vec P Q is perpendicular to vec A Ba n d vec C B both.

vec A B=3 hat i- hat j+ hat ka n d vec C D=-3 hat i+2 hat j+4 hat k are two vectors. The position vectors of the points Aa n dC are =6 hat i+7 hat j+4 hat ka n d=-9 hat j+2 hat k respectively. Find the position vector of a point P on the line A B and a point Q on the line C D such that vec P Q is perpendicular to vec A Ba n d vec C B both.

The position vectors of the points A and B are 3hat i-hat j+7hat k and 4hat i-3hat j-hat k; find the magnitude and direction cosines of vec AB .

If position vectors of two points A and B are 3hat(i)- 2hat(j) + hat(k) and 2hat(i) + 4hat(j) - 3hat(k) , respectively then length of vec(AB) is equal to?

If the position vectors of points A and B are 3hat(i)-2hat(j)+hat(k) and 2hat(i)+4hat(j)-3hat(k) respectively, then what is the length of vec(AB) ?

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

The position vectors of the points A and B are 3hat(i)-hat(j)+7hat(k) " and " 4hat(i)-3hat(j)-hat(k) , find the magnitude and direction cosines of vec(AB)

Find the points of trisection of [PQ] if the position vectors of P and Q are respectively 3 hat i+ 2 hat j- 4 hat k and 9 hat i+ 8 hat j-10 hat k .

If the position vectors of vec(A) and vec(B) are 3hat(i) - 2hat(j) + hat(k) and 2hat(i) + 4hat(j) - 3hat(k) the length of vec(AB) is