Home
Class 12
MATHS
If the normals any point to the parabola...

If the normals any point to the parabola `x^(2)=4y` cuts the line y = 2 in points whose abscissar are in A.P., them the slopes of the tangents at the 3 conormal points are in

Text Solution

Verified by Experts

`y^2=4ax----------`
`y=mx-2am-am^3`
`x^2=4ay`
`x=my-2am-am^3`
`a=1`
`x=my-2m-m^3`
`P(h,k)`
`h=mk-2m-m^3`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

If the normals any point to the parabola x^(2)=4y cuts the line y = 2 in points whose abscissa are in A.P., them the slopes of the tangents at the 3 conormal points are in

If the normals from any point to the parabola y^(2)=4x cut the line x=2 at points whose ordinates are in AP then prove that the slopes of tangents at the co-normal points are in G.P.

If the normals from any point to the parabola y^2=4x cut the line x=2 at points whose ordinates are in AP, then prove that the slopes of tangents at the co-normal points are in GP.

If the normals from any point to the parabola y^2=4x cut the line x=2 at points whose ordinates are in AP, then prove that the slopes of tangents at the co-normal points are in GP.

If the normals from any point to the parabola y^2=4x cut the line x=2 at points whose ordinates are in AP, then prove that the slopes of tangents at the co-normal points are in GP.