Home
Class 12
MATHS
If f(x) = int1^(x^3) \ dt/(1+t^4), then ...

If `f(x) = int_1^(x^3) \ dt/(1+t^4)`, then `f^(primeprime)(x)` is equal to (i) `(6x ((1-5x^2)^12))/(1+x^12)^2` (ii)`(6x ((1+5x^2)^12))/(1+x^12)^2` (iii) `-(6x ((1-5x^2)^12))/(1+x^12)^2` (iv) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_(1)^(x^(3))(dt)/(1+t^(4)), then f'(x) is equal (6x((1-5x^(2))^(12)))/((1+x^(12))^(12))) (ii) (6x((1+5x^(2))^(12)))/((1+x^(12))^(2))( (iii) -(6x((1-5x^(2))^(12)))/((1+x^(12))^(2)) (iv) none of these

int(x^(6)-1)/(x^(2)+1)dx12

If f(x)=x^(2)+4x-5andA={:[(1,2),(4,-3)]:} , then f(A) is equal to

If f(x)=x^(2)+4x-5andA={:[(1,2),(4,-3)]:} , then f(A) is equal to

2x ^ (2)-(5) / (6) x + (1) / (12)

f(x)=-(1)/(3)x^(3)+5x^(2)+12

Solve the equation (12x-1)(6x-1)(4x-1)(3x-1)=5

Solve the equation (12x-1)(6x-1)(4x-1)(3x-1)=5

Solve the equation (12x-1)(6x-1)(4x-1)(3x-1)=5

Solve the equation (12x-1)(6x-1)(4x-1)(3x-1)=5