Home
Class 12
MATHS
Let a,b,c,x,y,z be real.Given a^2+b^2+c^...

Let `a,b,c,x,y,z` be real.Given `a^2+b^2+c^2=4, x^2+y^2+z^2=9` and `ax+by+cz>=6`, then the value of expression `[a+2b+3c]/[x+2y+3z]` is (A) `1/3` (B) 3 (C) `2/3` (D) `1/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a, b, c, x, y, z are real and a^(2)+b^(2) + c^(2)=25, x^(2)+y^(2)+z^(2)=36 and ax+by+cz=30 , then (a+b+c)/(x+y+z) is equal to :

If a, b, c, x, y, z are real and a^(2)+b^(2) + c^(2)=25, x^(2)+y^(2)+z^(2)=36 and ax+by+cz=30 , then (a+b+c)/(x+y+z) is equal to :

If a, b, c, x, y, z are real and a^(2)+b^(2) + c^(2)=25, x^(2)+y^(2)+z^(2)=36 and ax+by+cz=30 , then (a+b+c)/(x+y+z) is equal to :

If a^2=by +cz " " b^2=cz+ax and c^2=ax+by , then the value of (x)/(a+x) + (y)/(b+y) +(z)/(c+z) will be

If a, b, c, x, y and z be real numbers and x^(2)+y^(2)+z^(2)=16 a^(2)+b^(2)+c^(2)=9 ax+by+cz=12 ; the value of [a^(3)+b^(3)+c^(3)]^(1/3) / [x^(3)+y^(3)+z^(3)]^(1/3) is

If b+c = 2x, c+a =2y and a +b =2z then value of a^(3) +b^(3) +c^(3) is

If a, b, c, x, y and z be real numbers and x^(2)+y^(2)+z^(2)=16 , a^(2)+b^(2)+c^(2)=9 and ax+by+cz=12 ; the value of ((a^(3)+b^(3)+c^(3))^((1)/(3)))/((x^(3)+y^(3)+z^(3))^((1)/(3))) is