Home
Class 12
MATHS
The point (at^2,2bt) lies on the hyperbo...

The point `(at^2,2bt)` lies on the hyperbola `x^2/a^2-y^2/b ^2= 1` for

Promotional Banner

Similar Questions

Explore conceptually related problems

For the standard hyperbola x^2/a^2-y^2/b^2=1 ,

Statement 1 : If from any point P(x_1, y_1) on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=-1 , tangents are drawn to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1, then the corresponding chord of contact lies on an other branch of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=-1 Statement 2 : From any point outside the hyperbola, two tangents can be drawn to the hyperbola.

Statement 1 : If from any point P(x_1, y_1) on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=-1 , tangents are drawn to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1, then the corresponding chord of contact lies on an other branch of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=-1 Statement 2 : From any point outside the hyperbola, two tangents can be drawn to the hyperbola.

Statement 1 : If from any point P(x_1, y_1) on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=-1 , tangents are drawn to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1, then the corresponding chord of contact lies on an other branch of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=-1 Statement 2 : From any point outside the hyperbola, two tangents can be drawn to the hyperbola.

The tangent at a point P on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 passes through the point (0,-b) and the normal at P passes through the point (2asqrt(2),0) . Then the eccentricity of the hyperbola is

The tangent at a point P on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 passes through the point (0,-b) and the normal at P passes through the point (2asqrt(2),0) . Then the eccentricity of the hyperbola is

The tangent at a point P on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 passes through the point (0,-b) and the normal at P passes through the point (2asqrt(2),0) . Then the eccentricity of the hyperbola is

The line 2x + y = 1 is tangent to the hyperbola x^2/a^2-y^2/b^2=1 . If this line passes through the point of intersection of the nearest directrix and the x-axis, then the eccentricity of the hyperbola is

The line 2x + y = 1 is tangent to the hyperbola x^2/a^2-y^2/b^2=1 . If this line passes through the point of intersection of the nearest directrix and the x-axis, then the eccentricity of the hyperbola is

The line 2x + y = 1 is tangent to the hyperbola x^2/a^2-y^2/b^2=1 . If this line passes through the point of intersection of the nearest directrix and the x-axis, then the eccentricity of the hyperbola is