Home
Class 12
MATHS
If Sn=1^2+(1^2+2^2)+(1^2+2^2+3^2)+ upto ...

If `S_n=1^2+(1^2+2^2)+(1^2+2^2+3^2)+` upto `n` terms, then `S_n=(n(n+1)^2(n+2))/(12)` b. `S_n=(n(n-1)^2(n+2))/(12)` c. `S_(22)=3276` d. `S_(22)=23275`

Promotional Banner

Similar Questions

Explore conceptually related problems

If S_(n)=1^(2)+(1^(2)+2^(2))+(1^(2)+2^(2)+3^(2))+ upto n terms,then S_(n)=(n(n+1)^(2)(n+2))/(12)bS_(n)=(n(n-1)^(2)(n+2))/(12)c.S_(22)=3276dS_(22)=23275

S_n=3/(1^2)+5/(1^2+2^2)+7/(1^2+2^2+3^2)+ upto n terms, then a. S_n=(6n)/(n+1) b. S_n=(6(n+2))/(n+1) c. S_oo=6 d. S_oo=1

S_(n)=(3)/(1^(2))+(3)/(1^(2)+2^(2))+(7)/(1^(2)+2^(2)+3^(2))+... upto n terms,then S_(n)=(6n)/(n+1) b.S_(n)=(6(n+2))/(n+1)cS_(oo)=6d.S_(oo)=1

S_(n)=sum_(n=1)^(n)(n)/(1+n^(2)+n^(4)) then S_(10)S_(20)

Find S_n , if S_n = 1.3 + 2.4 + 3.5 + … upto n terms.

If S_(n) denotes the sum of n terms of A.P.then S_(n+1)-3S_(n+2)+3S_(n+1)-S_(n)=2^(S)-nbs_(n+1)c.3S_(n)d.0

Let S_n=1/1^2 + 1/2^2 + 1/3^2 +….. + 1/n^2 and T_n=2 -1/n , then :

Let S_n=1/1^2 + 1/2^2 + 1/3^2 +….. + 1/n^2 and T_n=2 -1/n , then :

Sum of the series S_(n) =(n) (n) + (n-1) (n+1) + (n-2) (n+2) + …+ 1(2n-1) is

1.2+2.2^(2)+3.2^(3)+....+n.2^(n)=(n-1)2^(n-1)+2