Home
Class 12
MATHS
For all n in N, 1 + 1/(sqrt(2))+1/(sqrt(...

For all `n in N, 1 + 1/(sqrt(2))+1/(sqrt(3))+1/(sqrt(4))++1/(sqrt(n))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum of the first n terms of the series 1/(sqrt(2) + sqrt(3)) + 1/(sqrt(3) + sqrt(4)) +...

lim_(n rarr oo)(sin(1)/(sqrt((n))))((1)/(sqrt(n+1)))^(+(1)/(sqrt(n+2))+(1)/(sqrt(n+2)))

If 4 cos 36^(@) + cot(7(1^(@))/(2)) = sqrt(n_(1)) + sqrt(n_(2)) + sqrt(n_(3)) + sqrt(n_(4)) + sqrt(n_(5)) + sqrt(n_(6)) then the product of the digits in sum_(i = 1)^(6) n_(i)^(2) =

The sum n terms of the series 1/(sqrt(1)+sqrt(3))+1/(sqrt(3)+sqrt(5))+1/(sqrt(5)+sqrt(7))+ is sqrt(2n+1) (b) 1/2sqrt(2n+1) (c) 1/2sqrt(2n+1)-1 (d) 1/2{sqrt(2n+1)-1}