Home
Class 12
MATHS
If |veca|=|vecb|=1, |vecc|=3 vecb.vecc=-...

If `|veca|=|vecb|=1`, `|vecc|=3` `vecb.vecc=-3/4` and `vecaxxvecc=2(vecaxxvecb)`

Promotional Banner

Similar Questions

Explore conceptually related problems

For three vectors veca, vecb and vecc , If |veca|=2, |vecb|=1, vecaxxvecb=vecc and vecbxxvecc=veca , then the value of [(veca+vecb,vecb+vecc,vecc+veca)] is equal to

Three vectors veca,vecb and vecc are such that |veca|=2,|vecb|=3,|vecc|=4, and veca+vecb+vecc=vec0. Find 4veca.vecb+3vecb.vecc+3vecc.veca .

Three vectors veca,vecb and vecc are such that |veca|=2,|vecb|=3,|vecc|=4 and veca+vecb+vecc=0 find 4veca*vecb+3vecb*vecc+3vecc*veca .

Three vectors veca, vecb" and "vecc are such that |veca|=2,|vecb|=3,|vecc|=4" and "veca+vecb+vecc=0 find 4veca*vecb+3vecb*vecc+3vecc*veca .

If |veca|=1,|vecb|=2,|vecc|=3and veca+vecb+vecc=0 the show that veca.vecb+vecb.vecc+vecc.veca=- 7

If |veca|=1,|vecb|=2,|vecc|=3and veca+vecb+vecc=0 the show that veca.vecb+vecb.vecc+vecc.veca=- 7

Let veca and vecc be unit vectors such that |vecb|=4 and vecaxxvecb=2(vecaxxvecc) . The angle between veca and vecc is cos^(-1)(1/4) . If vecb-2vecc=lamdaveca then lamda=

Let veca and vecc be unit vectors such that |vecb|=4 and vecaxxvecb=2(vecaxxvecc) . The angle between veca and vecc is cos^(-1)(1/4) . If vecb-2vecc=lamdaveca then lamda=

If veca,vecb, vecc are three vectors such that veca + vecb +vecc =vec0, |veca| =1 |vecb| =2, | vecc| =3 , then veca.vecb + vecb .vecc +vecc + vecc.veca is equal to

If |veca|=3, |vecb|=1, |vecc|=4 and veca + vecb + vecc= vec0 , find the value of veca.vecb+ vecb+ vecc.vecc + vecc.veca .