Home
Class 12
MATHS
. Let a, b > 0 and vecalpha=hati/a+4hatj...

. Let a, b > 0 and `vecalpha=hati/a+4hatj/b+bhatk` and `beta=bhati+ahatj+hatk/b` then the maximum value of `30/(5+alpha.beta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a,bgt0 and alpha=(hati)/(a)+(4hatj)/(b)+bhatk and beta=bhati+ahatj+(hatk)/(b) , then the maximum value of (30)/(5+alpha*beta) is

Let a,b gt 0 and vecalpha=(veci/a+(4hatj)/b+bhatk) and vecbeta = bhati+ahatj+1/bhatk , then the maximum value of 30/(5 + vecalpha.vecbeta) is

Let a,bgt0 and alpha=(hati)/(a)+(4hatj)/(b)+bhatk and beta=bhati+ahattj+(1)/(b)hatk , then the maximum value of (10)/(5+alpha*beta) is

Let a,bgt0 and alpha=(hati)/(a)+(4hatj)/(b)+bhatk and beta=bhati+ahattj+(1)/(b)hatk , then the maximum value of (10)/(5+alpha*beta) is

If vec(alpha)=(1)/(a)hati+(4)/(b)hatj+b hatk and vec(beta)=b hati+a hatj+(1)/(b)hatk then the maximum value (10)/(5+vec(alpha).vec(beta) is …………

Let vecalpha=(1)/(a)hati+(4)/(b)hatj+bhatk and vecbeta=bhati+ahatj+(1)/(b)hatk(Aaa, b gt 0) , then the maximum value of (12)/(6+vecalpha.vecbeta)) is

If vecalpha= 2hati+3 hat j-6 hatk and vec beta= phat i-hatj+2 hatk are two parallel vectors, then the value of p is